意匠性・生産性・耐震性に優れた木材と鉄骨の合成接合工法の開発と実用化研究

 合成構造
 鉄骨
 木造

 構造実験
 加熱実験
 施工試験

研究の目的

本研究は、鉄骨と木材による合成構造について、意匠 性や生産性を考慮し、耐震性や耐久性を有する構造シス テムを提案し、その有効性や適用性を明らかにすること を目的としている。

先行研究において、木質面材と鉄骨骨組の合成耐力壁を提案・実用化・製品化し、山梨県内や大分県内のテストフィールドで建設した(図 1)。これらの研究・開発により、合成接合部が、耐震性、意匠性、施工性、耐久性に影響することが明らかとなった。そこで、本研究課題では、基礎研究から実地研究を実施した。

図1 テストフィールドの試験建屋

研究の内容

鉄骨に木材をボルトやビス、接着剤で接合する工法を 対象とし(図 2)、構造性・耐火性・施工性・耐久性を対 象として、基礎研究、実用化研究、実地研究を実施した。

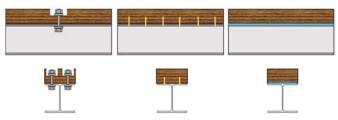


図2 木材と鉄骨の合成接合部の概要

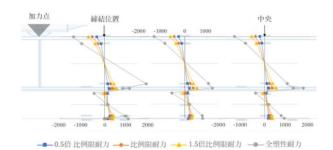
- 1) 基礎研究では、構造実験を通じて力学挙動や復元力特性を分析し、加熱実験により木材の耐火被覆としの効果を検討した。
- 2) 実用化研究では、接合工法の加工・施工手順を整理した。耐火被覆の在来工法とともに、木材による被覆工法を検討した。

3) 実地研究では、北海道と大分の試験建屋で施工試験を行い、耐久性評価のための暴露試験の環境を整備した。

研究の成果、新知見

1) 構造性に関する実験的研究(図 3-6)

H形鋼とみぞ形鋼を対象とし、木材をボルト接合して合成構造とし、曲げ載荷実験を行った。実験結果より、重ね梁と完全一体の力学挙動が観察され、耐力・剛性の向上と座屈補剛効果を確認した。また、木材を接合することで、軽量みぞ形鋼のねじれ抑制に有効であった。



(a) 全体

(b) 座ぐり周辺

(c) 接合部

(i) 終局状態

(ii) 鉄骨のひずみ分布 図 3 H 形鋼—木材の曲げ実験結果

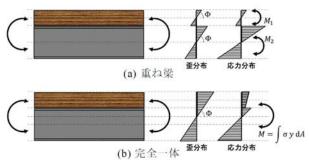


図4 木造と鉄骨の合成構造の力学特性

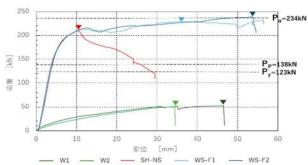
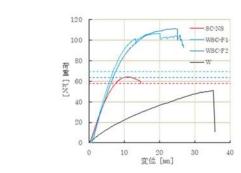
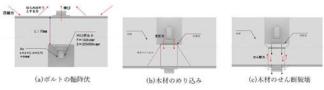
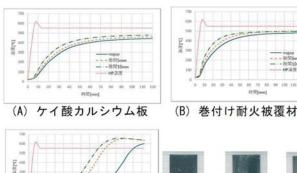



図5 軽量 H 形鋼―木材の曲げ実験結果




図6 軽量みぞ形鋼―木材の曲げ実験結果

2) 耐火性に関する加熱実験(図7)

加熱実験では、鉄骨部材の耐火被覆に関する在来工法と、木材による被覆工法を対象とし、耐火性に関する加熱実験を行った。特に、地震時火災を対象として、被覆材が被災し、損傷による隙間が耐火性や昇温特性に与える影響を実験対象とし、その変化を定量的に示した。

3) 施工性と耐久性に関する実地実験(図8)

大分県別府市と北海道網走市のテストフィールドに建設した鉄骨骨組に対し、木材 (線材、面材)をボルトとビスで接合し、合成構造の試験建屋とした。工事を通じて、施工性について定性的に課題を整理した。

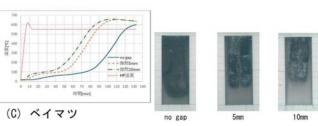


図 7 在来耐火工法と木材被覆による鉄骨部材の耐火特性 に関する加熱実験結果

図8 テストフィールドでの施工試験の様子

今後の予定

本研究課題では、全実験変数の一部のみにとどまって おり、追加実験・検討を継続し、より最適な合成接合法 の確立を目指す。

テストフィールドの試験建屋には、地震計や IoT 計測機器を設置した。観測を継続し、合成接合部の経年変化を観察・検討する。また、屋外暴露試験として、耐久性について実地研究を継続する。(図 9)

図9 試験建屋の観測体制

謝辞

東京理科大学 客員教授・金澤健司先生、助教・崎山夏 彦先生、大学院生・大塚真宙さん、富田桃花さん、滕昊 達さん、馮迹航さん、小山浩輝さん、学部生・蒲生竜之 介さん、内藤一茶さん、深澤優太さん、星野瑠偉さん、 森亮太朗さんにご尽力いただきました。謝意を表します。

^{*}東京理科大学工学部建築学科

^{**}広島工業大学環境学部建築デザイン学科

^{***}呉建築事務所

^{*} Dept. of Archi., Fac. of Eng., Tokyo University of Science

^{**}Dept. of Archi. Design, Fac. of Env. Studies, Hiroshima Institute of Tech.

^{***}Wu Building Office