スラブ付き EWECS 柱梁十字形接合部の構造性能評価法の開発

合成構造	静的載荷実験	合成梁
復元力特性	破壊モード	せん断耐力

1. はじめに

EWECS (Engineering Wood Encased Concrete-Steel)構造 は内蔵鉄骨,コンクリートおよび集成材から構成される 新たな合成構造システムである。申請者は平成 28 年度に 梁曲げ降伏先行型スラブ付き EWECS 柱梁接合部の構造実 験を行い,当該接合部が大変形時まで耐力低下の少ない 安定した復元力特性を有することを示してきた。本研究 では,パネルせん断破壊先行型スラブ付き EWECS 柱梁接 合部の構造実験を実施した。本報では,実験結果の概要 を述べるとともに,パネルせん断耐力評価方法の検討結 果を報告する。

2. 静的載荷実験

試験体は中高層フレーム建築物を想定した実大の約 1/2 スケールのものであり、4体を検討対象とした。図1に試 験体形状を,図2に部材断面を,表1に試験体概要をそ れぞれ示す。2017年度の実験変数は柱鉄骨の断面形状を, 2018 年度の実験変数は柱軸力比をそれぞれ選択した。 2017 年度の試験体 JS1 の柱鉄骨断面は H 形となっており, 直交梁が取り付いていない。JSO1の柱鉄骨断面は十字形 となっており、H-300×150×6.5×9の直交梁が取り付いてい る。一方の 2018 年度の試験体 JST3 および JST0 の柱鉄骨 断面は T 形となっている。表 2 にコンクリートと集成材 の材料特性を,表3に鋼材の材料特性をそれぞれ示す。 軸力は載荷フレームに取り付けた 2 台の鉛直ジャッキに よって一定軸力を作用させ,反力壁に取り付けた水平ジ ャッキによって水平力を作用させた。水平力載荷は梁端 部に取り付けたピン支承間の相対鉛直変位 δ を左右ピン 支承間距離で除した相対変形角による変位制御とした。

3. 実験結果

図3に各試験体のせん断力-変形角関係をそれぞれ示す。 2017年度試験体では、R=1.5×10²radの載荷サイクルまで 両試験体の履歴特性に顕著な差は認められない。H形柱鉄 骨断面試験体JS1では耐力低下が確認されたのに対して、 十字形柱鉄骨断面試験体JSO1では最終載荷サイクルまで 顕著な耐力低下は確認されなかった。両試験体ともにパ ネルせん断破壊が先行したものと判断された。しかし、 柱鉄骨断面が十字形の試験体JSO1では、弱軸フランジの せん断力への寄与により顕著な耐力低下が生じなかった ものと推察された。

2018年度試験体では、軸力比0.3とした試験体JSOE1は

大阪大学 〇鈴木 卓1*

635 Column H-280x200x9x16 6 Beam -300x150x10x15 Panel zone 1-280x200x4.5x16 635 G 290 885 400 885 試験体形状 図 1 40 280 40 1851 150 185 4V 28U 20 1851 150 1851 8 280 320 320 BH-280x200x9x16 (Strong-Axis BH-280x150x9x16 (Weak-Axis) BH-280x200x9x16 (Strong-) BT-165x150x9x16 (Weak-A JS1 JSO1 JSOE1 JSOE2 800 8 2-D6@100 Stud Bolts 2-\$\phi13@75 H-300x150x10x15 H-300x150x10x15 JS1 JSO2 JSOE1 JSOE2 図 2 断面詳細(上段:柱, 下段:梁) 試験体諸元 表 1 試験体 JS1 JSO1 JSOE1 JSOE2 軸力 (kN) 1 460 1,200 0 厚さ:40 mm 集成材 材種:スギ コンクリ ⊢ (mmˈ 321 320 面内 H-280x200x9x16 柱 ウェブ : PL-6 H-280x 鉄骨 面外 フランジ PL-16 150x9x16 面内 H-300x150x10x15 鉄骨 面外 H-300x150x10x15 梁 t×B (mm) 100x800 100x560 スラブ 鉄筋 2-D6@100 み 軸 ウェー PI -4 5 パネル 弱軸フランジ PL-9 コンクリートおよび集成材の材料特性 表 2 試験体 JS1 JS01 JS0E1 JS0E2 コンクリートの圧縮強度 (N/mm²) 47.5 47.4 38.6 41.3 杉集成材の圧縮強度 (N/mm²) 37.8 23.2 表 3 鋼材の材料特性 JSO JSO1 JSOE1 JSOE2 降伏強度 (N/mm²) 降伏強度 (N/mm²) フランジ PL-16 (SS400) 264 265 柱 ウェブ PL-9 (SS400) 289 305 フランジ PL-15 (SS400) 300 282 梁 PL-10 (SS400) 295 340 ダイアフラム PL-16 (SS400) 264 265 接合部 強軸ウェブ PL-4.5 (SS400 300 295 弱軸フランジ PL-9 (SS400) 289 305 スラブ D6 (SD295A) 316 429

軸力比0.0とした試験体JSOE2と比べて初期剛性および耐力が高い。両試験体ともに*R*=2.4×10²radのピーク時に最大耐力が記録され,最終載荷サイクルまで顕著な耐力低下は確認されなかった。以上の結果から,T字形柱鉄骨断面試験体においても前述の十字形の試験体と同様にパネルせん断破壊が生じたものの,パネル弱軸鉄骨フランジのせん断力への寄与に伴い顕著な耐力低下が確認されなかったものと推察された。

4. 終局強度計算

EWECS 柱梁接合部のパネルせん断強度は SRC 規準¹⁾を 基に提案された式(1)から(2)を用いて算出した。式(1)では, 右辺第 3 項においてパネル弱軸鉄骨フランジの寄与を考 慮している。また,本研究では,文献 2)の接合部有効断 面積の考え方を基に,接合部有効幅に制限を設けること とした(式(2))。式中の記号は文献 2)および 3)を参照され たい。

$$Q_{p} = {}_{j}F_{s\,j}\delta_{c\,c}A_{e} + 1.2_{sw}\sigma_{y\,sw}A/\sqrt{3} + \sum 2/3_{sf}\sigma_{y\,sf}A/\sqrt{3} \quad (1)$$

$${}_{c}A_{e} = \left({}_{b}b + {}_{a1}b + {}_{a2}b\right){}_{c}D \tag{2}$$

表 4 に各試験体の終局強度計算結果を示す。同図には, 一般化累加強度理論により算出した合成梁の曲げ終局強 度時の柱せん断力換算値の結果も併せて示した。全ての 試験体においてパネルせん断耐力の計算値は梁曲げ耐力 計算値と比べて低くなり,パネルせん断破壊先行型と判 断された実験結果と終局強度評価に基づく破壊モードの

表4 終局強度の計算結果(層せん断力換算値)

試験体	JS1	JSO1	JSOE1	JSOE2	
最大耐力 (kN)	437	547	407	389	
梁曲げ耐力 ㎝Q (kN)	506	506	489	493	
接合部せん断耐力 _{cj} Q(kN)	378	466	371	383	
接合部せん断余裕度	0.75	0.92	0.76	0.78	
実験値 / 梁曲げ強度	0.86	1.08	0.83	0.79	
実験値 / パネルせん断強度	1.16	1.17	1.10	1.02	

判定結果は良好な対応関係を示した。また,実験の最大 耐力およびパネルせん断耐力の計算結果の比率は 1.02~ 1.17 となり,概ね評価可能であった。

まとめ

- 本研究対象のすべての試験体においてパネルせん断破 壊の発生が認められた。
- 2) 柱鉄骨断面形状がH形の試験体ではパネルせん断破壊 に伴う耐力低下が確認されたものの柱鉄骨断面が十字 形およびT字形の試験体ではせん断破壊後も顕著な耐 力低下は確認されなかった。
- 本報に示した試験体のパネルせん断耐力は SRC 規 準式を基に、弱軸フランジの影響を考慮し、パネル コンクリートの有効幅に制限を加えることで概ね評 価可能であった。

参考文献

- 日本建築学会:鉄骨鉄筋コンクリート計算規準・同解説, 2016
- 日本建築学会:鉄筋コンクリート造建物の終局強度型耐 震設計指針・同解説,1990

*大阪大学大学院工学研究科 助教・博士(工学)

* Osaka University, Assistant Professor